首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   291篇
  免费   135篇
  国内免费   71篇
化学   423篇
晶体学   12篇
力学   2篇
物理学   60篇
  2024年   3篇
  2023年   8篇
  2022年   32篇
  2021年   28篇
  2020年   69篇
  2019年   39篇
  2018年   47篇
  2017年   28篇
  2016年   57篇
  2015年   42篇
  2014年   38篇
  2013年   34篇
  2012年   23篇
  2011年   15篇
  2010年   10篇
  2009年   9篇
  2008年   3篇
  2007年   6篇
  2006年   2篇
  2005年   3篇
  1994年   1篇
排序方式: 共有497条查询结果,搜索用时 828 毫秒
1.
In this reports the facile and green synthesis of rutile-type titanium dioxide nanoparticles decorated graphene oxide nanocomposite via the ultrasonication process (frequency: 50 kHz, Power: 100 W/cm2 and Ultrasonic type: Ti-horn). Because, the sonochemical synthesis method is simple, non-explosive and harmless method than other conventional technique. Furthermore, the synthesized material was characterized by various analytical techniques including FESEM, EDX, XRD, EIS and electrochemical methods. Then, the synthesized TiO2 MPs@GOS composite was applied for the electrocatalytic detection of theophylline (TPL) using CV and amperometric (current-time) techniques. Captivatingly, the modified sensor has excellent electrocatalytic performance with the wider linear range from 0.02 to 209.6 µM towards the determination of theophylline and the LOD and sensitivity of the modified sensor was calculated as 13.26 nM and 1.183 μA·µM−1·cm−2, respectively. In addition, a selectivity, reproducibility and stability of the TiO2 MPs@GOS modified GCE were analyzed towards the determination of theophylline molecule. Finally, the real time application of TiO2 MPs@GOS modified theophylline sensor was established in serum and drug samples.  相似文献   
2.
首先采用溶液法在碳布上生长Co-MOF二维纳米片,通过高温退火和刻蚀后得到MOF衍生多孔碳纳米片。以Co-MOF衍生的多孔碳纳米片/碳布(CNS/CC)作为碳基骨架,采用电化学沉积法负载高活性氮掺杂石墨烯量子点(N-GQDs),制备得到分级多孔结构的N-GQD/CNS/CC复合材料。组装成自支撑且无粘结剂的N-GQD/CNS/CC电极,当电流密度为1 A·g~(-1)时,其比电容高达423 F·g~(-1)。通过储能机制和电容贡献机制的研究表明,在碳纤维上原位生长的具有高双电层电容的CNS和表面负载具有高赝电容的N-GQDs之间相互协同作用,使得N-GQD/CNS/CC电极具有高电容性能,是一种理想的超级电容器电极材料。电极材料的高导电、分级多孔结构有利于电子的传输和电解质离子的扩散,具有良好的动力学性能,能快速充放电和具有优异的倍率特性。将电极组装成对称型超级电容器,功率密度为250 W·kg~(-1)时对应的能量密度达到7.9 Wh·kg~(-1),且经过10 000次循环后电容保持率为91.2%,说明氮掺杂石墨烯量子点/MOF衍生多孔碳纳米片复合材料是一种电化学性能稳定的具有高电容性能的全碳电极材料。  相似文献   
3.
SnNb2O6 and Sn2Nb2O7 nanosheets were synthetized via microwave assisted hydrothermal method, and innovatively employed as anode materials for lithium-ion battery. Compared with Sn2Nb2O7 and the previously reported pure Sn-based anode materials, the SnNb2O6 electrode exhibited outstanding cycling performance.  相似文献   
4.
Nanosheet of PdNiZn and nanosphere of PdNiZn/reduced‐graphene oxide (RGO) with sub‐3 nm spheres have been successfully synthesized through a facile oil‐water interfacial strategy. The morphology and composition of the films were determined by X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive analysis of X‐ray (EDAX) and elemental mapping. In the present study, we have developed a method to minimize the usage of precious Pd element. Due to the special structure and intermetallic synergies, the PdNiZn and PdNiZn/RGO nanoalloys exhibited enhanced catalytic activity and durability relative to Pd nanoparticles in Suzuki‐Miyaura C‐C cross‐coupling reaction. Compared to classical cross‐coupling reactions, this method has the advantages of a green solvent, short reaction times, low catalyst loading, high yields and reusability of the catalysts.  相似文献   
5.
The present article describes a miniaturized potentiometric urea lipid film based biosensor on graphene nanosheets. Structural characterization of graphene nanosheets for miniaturization of potentiometric urea lipid film based biosensors have been studied through atomic force microscopy (AFM) and transmission electron microscopy (TEM) measurements. UV‐Vis and Fourrier transform IR (FTIR) spectroscopy have been utilized to study the pre‐ and postconjugated surfaces of graphene nanosheets. The presented potentiometric urea biosensor exhibits good reproducibility, reusability, selectivity, rapid response times (~4 s), long shelf life and high sensitivity of ca. 70 mV/decade over the urea logarithmic concentration range from 1×10?6 M to 1×10?3 M.  相似文献   
6.
7.
Two-dimensional carbon nanosheets have been fabricated using inductively coupled radio frequency plasma-enhanced chemical vapour deposition. The structural properties of the nanosheets have been characterised using atomic force microscopy, scanning electron microscopy and X-ray diffractometer. The magnetisation of the samples was studied using vibrating sample magnetometer. The magnetisation of the nanosheets was found to be diamagnetic for fast synthesis processes (30 and 60 min). On the other hand, the nanosheets exhibited a weak ferromagnetic response for the slow (120 min) synthesis process. Energy dispersive spectrometry and atomic absorption spectroscopy confirmed that the magnetisation exhibited by the carbon nanosheets was an intrinsic property and that it was not due to contamination from the substrate. Raman spectroscopy studies revealed that the ferromagnetic carbon nanosheets have a higher ratio (1.20) of graphite peak (I G) to disordered peak (I D) than normally expected (0.75–0.90). Available data indicated that the magnetisation was due to the presence of structural disorders.  相似文献   
8.
9.
Enrichment of UVI is an urgent project for nuclear energy development. Herein, magnetic graphitic carbon nitride nanosheets were successfully prepared by in situ anchoring of pyrrhotite (Fe7S8) on the graphitic carbon nitride nanosheet (CNNS), which were used for capturing UVI. The structural characterizations of Fe7S8/CNNS-1 indicated that the CNNS could prevent the aggregation of Fe7S8 and the saturation magnetization was 4.69 emu g−1, which meant that it was easy to separate the adsorbent from the solution. Adsorption experiments were performed to investigate the sorption properties. The results disclosed that the sorption data conformed to the Langmuir isotherm model with the maximum adsorption capacity of 572.78 mg g−1 at 298 K. The results of X-ray photoelectron spectroscopy (XPS) demonstrated that the main adsorption mechanism are as follows: UVI is adsorbed on the surface of Fe7S8/CNNS-1 through surface complexation initially, then it was reduced to insoluble UIV. Thereby, this work provided an efficient and easy to handle sorbent material for extraction of UVI.  相似文献   
10.
Proteolysis of amyloid-β (Aβ) is a promising approach against Alzheimer's disease. However, it is not feasible to employ natural hydrolases directly because of their cumbersome preparation and purification, poor stability, and hazardous immunogenicity. Therefore, artificial enzymes have been developed as potential alternatives to natural hydrolases. Since specific cleavage sites of Aβ are usually embedded inside the β-sheet structures that restrict access by artificial enzymes, this strongly hinders their efficiency for practical applications. Herein, we construct a NIR (near-IR) controllable artificial metalloprotease (MoS2-Co) using a molybdenum disulfide nanosheet (MoS2) and a cobalt complex of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (Codota). Evidenced by detailed experimental and theoretical studies, the NIR-enhanced MoS2-Co can circumvent the restriction by simultaneously inhibition of β-sheet formation and destroying β-sheet structures of the preformed Aβ aggregates in living cell. Furthermore, our designed MoS2-Co is an easy to graft Aβ-target agent that prevents misdirected or undesirable hydrolysis reactions, and has been demonstrated to cross the blood brain barrier. This method can be adapted for hydrolysis of other kinds of amyloids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号